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ABSTRACT 

The success of interceptors used by the United States ballistic missile defense program is 

jeopardized by the use of hostile missile decoy deployment and evasive maneuvers. The 

ability to discriminate between legitimate threats and decoys is a crucial requirement for 

interceptor algorithms. The feasibility of the interacting multiple model joint probabilistic 

data association filter to effectively track a ballistic missile and detect decoys and 

maneuvers is the focus of this thesis. Model development and data association schemes 

are discussed along with optimized values for selected parameters.  

Performance comparisons of the resultant algorithm to a standard Kalman filter 

utilizing a nearest neighbor discriminator are conducted. Scenarios include combinations 

of missile maneuver and decoy deployment. While the Kalman filter experiences limited 

success, the proposed filter tracks the missile in every scenario. 
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EXECUTIVE SUMMARY 

The success of interceptors used by the United States ballistic missile defense program is 

jeopardized by the use of hostile missile decoy deployment and evasive maneuvers. The 

ability to discriminate between legitimate threats and decoys is a crucial requirement for 

interceptor algorithms. The feasibility of the interacting multiple model joint probabilistic 

data association filter (IMMJPDAF) to effectively track an intercontinental ballistic 

missile (ICBM) and detect decoys and maneuvers is the focus of this thesis. Model 

development and data association schemes are discussed along with optimized values for 

selected parameters.  

Two different models are used to describe the missile dynamics. One model 

describes straight-line motion (SLM), and the second model describes a constant velocity 

turn. The interacting multiple model (IMM) algorithm mixes the estimates from each of 

the models. The benefit of mixing the estimates is accurate prediction of missile position 

regardless of maneuvering frequency. Once a split target (e.g., decoy) is detected, the 

common history between the missile and decoy is exploited to generate a separate track 

for the decoy.  

The joint probabilistic data association filter (JPDAF) matches positions from 

multiple targets received by the sensor to the predicted location of each existing target. 

All possible combinations of received positions (observations) and predicted target 

locations are assigned a value based on probability of occurrence. A quantitative analysis 

of the probability values allows the filter to distribute observations to the associated 

target. The successful assignments from the JPDAF allow the IMM to better predict the 

next target position and increase the tracking performance of the integrated IMMJPDAF. 

With regard to ICBM tracking, the IMM algorithm proved to be capable during 

both steady-state and maneuvering conditions. For the given scenarios, the estimates 

resulting from the IMM mixing process received a reduction of measurement error of 50 

percent on average. The degradation of the individual model estimates was minimal. The 

number of transitions between the models, especially during a constant velocity 
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maneuver, was frequent and often occurred between each sample. For targets with the 

likelihood of transitioning between established models often, this method is appropriate. 

However, for the purposes of an ICBM that prefers to deploy decoys to conducting 

maneuvers, the necessity to account for continuous contact maneuver is reduced. In 

addition, the distance errors seen during model transitions are concerning due to the 

likelihood of decoy deployment during those periods. Distance errors at model transitions 

had negligible effect on the performance of the IMMJPDA filter during the scenarios 

tested but could become a concern under higher split target densities.   

With regard to split target tracking, the IMM provided a convenient framework in 

which to generate a split target and allowed for a seamless transition for follow-on track 

maintenance. We introduced a non-traditional IMM approach, where the two models 

regarding the split target are not subject the standard IMM processes. Initially, stacking 

the combined estimates to generate the split track allowed the common history of the 

target and decoy to be exploited. The decoy track generation caused an increase in 

distance error of the combined estimates of over two and a half times measurement error. 

The decoupling of model three and model four with the target models prevented further 

degradation of the combined estimates. Additionally, the linearly increasing model three 

errors showed that earlier decoupling of the split target and true target was best. 

Performance comparisons of the resultant algorithm to a standard Kalman filter 

utilizing a nearest neighbor discriminator are conducted. Scenarios included 

combinations of missile maneuver and decoy deployment. While the Kalman filter 

experiences limited success, the IMMJPDAF tracks the missile in every scenario. 
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I. INTRODUCTION 

A. BACKGROUND 

Ballistic missile defense is not a new concern for the United States, but until 

recently the number of countries with credible threats has been limited. The availability 

of ballistic missile technology to unstable nations poses a legitimate threat to the security 

of the United States. The challenge of hitting high-speed missiles in an exo-atmospheric 

environment has been overcome with capable interceptors. The use of decoys released 

from the missile body has the potential to dramatically reduce the effectiveness of the 

current interceptor inventory. Solutions include development of a new platform or an 

upgrade to existing interceptor sensors and tracking algorithms. The more fiscally 

prudent solution is the latter.  

In response to growing threats, the Ballistic Missile Defense Agency has adopted 

a multi-layered defense strategy utilizing the full spectrum of sensors and interceptors for 

boost, mid-course, and terminal phase interception [1]. The collection of sensors and 

platforms is illustrated in Figure 1. A clear distinction between the phases of ballistic 

missile travel helps to divide the unique challenges posed in each. The boost phase is 

from launch to the end of powered flight and lasts between 60 and 300 seconds [2]. 

Interception in this phase is preferred but challenging based on the short window of 

opportunity and political issues surrounding interceptor basing. Mid-course describes the 

trajectory from booster burnout to return to the earth’s atmosphere [2]. Recognizing the 

vulnerability while in the midcourse phase, threat missiles deploy decoys in this phase 

only for protection during the 100 second to 10 minute travel time.  The terminal phase is 

a last resort for interception and is defined where gravitational effects are noticed, 

typically between altitudes of 70 and 100 km [2].  
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Figure 1.  A combination of sensors and platforms in a multi-layered missile defense 

strategy contribute to successful interception of a ballistic missile in each 
phase of travel. From [1].  

The National Research Council submitted a report in [2] describing the current 

challenges of Ballistic Missile Defense. Midcourse intercept was identified as critical to 

the success of ballistic missile interception, even in the terminal phase [2]. If destruction 

of reentry vehicles that split off from the missile cannot be completed in the mid-course 

phase, identification and tracking must be accomplished for terminal phase interception. 

Mid-course discrimination is accomplished by the Ground-Based Interceptor system 

utilizing secure satellite communications for initial threat missile parameter evaluation 

and information dissemination [1].  

B. OBJECTIVE 

Advanced missile systems are capable of deploying decoys and maneuvering to 

thwart midcourse interception. Algorithms that can track through maneuvers and deal 
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with a single target splitting into multiple independent targets when decoys are deployed 

are required to deal with these advanced threats. The feasibility of using the interacting 

multiple model (IMM) [3] and the joint probabilistic data association (JPDA) [4] tracking 

filters in a ballistic missile interception scenario is the focus of this research. More 

specifically, the ability to accurately predict the missile state during maneuvering and 

target split operations will be analyzed.  

C. PREVIOUS WORK 

Ballistic missile tracking algorithms are relied upon to efficiently process the 

information provided by the vast network of sensors seen in Figure 1. Effective 

interception requires accurate threat missile position and speed information. Application 

of the probabilistic data association filter (PDAF) in over-the-horizon radar systems, as 

discussed in [5], provides threat missile track generation from a cluttered environment.  

To increase confidence in target track data, the integration of additional target 

information such as mass, heat, and signal strength has been extensively researched. For 

example, Colegrove and Davey use signal-to-noise ratio in [6] to quickly formulate target 

tracks.  

The IMM best fits applications involving fast moving and frequently maneuvering 

targets (e.g., air traffic control systems, GPS navigation, and radar tracking systems).  

Ballistic missile tracking using the IMM has been accomplished with a variety of 

approaches with a distinctive feature being the number of phases included. For example, 

Cooperman presents a model for all three phases of ballistic travel in [7] using multiple 

sensors. Farrell uses a similar approach in [8] by applying standard Kalman filters in each 

of his separate models (constant axial force, ballistic acceleration, and autocorrected 

acceleration). Both approaches achieved position error results that are best suited for a 

single phase of missile travel, while the other phases suffer from large inaccuracies. A 

majority of approaches, such as the one found in [9], use multiple models to describe a 

single phase, and most often the focus is the boost or terminal phase.  Our research will 

focus on only mid-course missile travel, requiring missile models with reliable split target 

detection. 
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Methods for detection of split targets are less researched due to limited 

applications. A method for split target tracking in clutter using an IMM is presented in 

[10], but the assumptions used in this approach limit the number of target splits (such as 

weapons shot from fighter aircraft). A generalized method for integrating the interacting 

multiple model joint probabilistic data association filter (IMMJPDAF) with target splits 

is presented in [3] and is the basis for the approach used in this research. To the best of 

the author’s knowledge, the application and parameter optimization of the IMMJPDAF 

for tracking a maneuvering ballistic missile during decoy deployment has not been 

researched.  

D. THESIS ORGANIZATION 

The standard Kalman filter, IMM, and JPDA equations are presented and adapted 

for efficiency in Chapter II, along with methods for split track generation and deletion. 

The generation and transition between models are discussed in Chapter III and are shaped 

by an estimation of the most likely scenarios. Critical initiation values for each model to 

include sensor and plant noise characteristics are also identified. Performance metrics and 

an analysis of MATLAB simulation results are given in Chapter IV. The simulations 

presented include a stand-alone evaluation of the IMM during target maneuver, split 

target detection from various target states, and a comparative analysis of the combined 

IMM and JPDAF to the standard Kalman filter. A summary of results and 

recommendations for future work are the focus of Chapter V.  
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II. FILTERING METHODOLOGY 

A. KALMAN FILTER 

A brief overview of the Kalman filter equations is given here and taken directly 

from [11]. The target state at time  is , representing the true target location. The 

transition of the true state of the system is described by 

 ,  (1) 

where  is the state transition matrix and is the plant noise. The deterministic 

term , which accounts for any known inputs to the system dynamics, and the 

associated input gain matrix  are normally included in Equation (1) but are not 

required for our analysis. Measurements are received at each time  and are related to 

the true target state as follows: 

 ,  (2) 

where  represents zero-mean, white measurement noise.  The state estimate at 

time  is  

 ,  (3) 

where  is the previous state estimate.  Once a measurement at  is received, 

the predicted measurement is compared to the received measurement as follows: 

 ,  (4) 

where the predicted measurement is  

 . (5) 

The state estimate is then updated by incorporating  in the following manner: 

 ,  (6) 
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where  is the Kalman filter gain. The Kalman gain requires computations 

involving the state covariance  and the state transition matrices. The state 

prediction covariance is  

 , (7) 

where  is the covariance of the zero-mean white process noise. Measurement noise 

covariance is taken into consideration as follows: 

 , (8)  

where  is the zero-mean, white measurement noise covariance. The Kalman filter 

gain calculation is  

 . (9) 

The state covariance is updated using  as follows: 

 .  (10) 

Equation (3) through Equation (10) are performed on each cycle.  

B. INTERACTING MULTIPLE MODEL 

1. Purpose 

Kalman filter tracking errors are known to increase as a target continues to 

deviate from the trajectory described by the state transition matrix shown in Equation (1).  

Thus, a single Kalman filter is insufficient for tracking a maneuvering target or multiple 

targets regardless of their trajectories. The IMM approach circumvents these problems by 

creating multiple state models.  A model is defined for each target state (e.g., straight-line 

motion, constant turn rate) to best describe the observed motion in the form of multiple 

transition matrices. Multiple Kalman filters running in parallel reduces tracking errors, 

assuming an adequate algorithm exists for filter transitions. “The unique feature of the 

IMM approach is the manner in which the state estimates and the covariance matrices 
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from these multiple models are combined according to a Markov model for the transition 

between target maneuver states” [4]. 

The IMM flowchart in Figure 2 below appears in [4] and provides a convenient 

method of summarizing IMM operation. Once a measurement (observation) is received, 

the JPDAF is assigned the task of deciding if and to which established track it belongs, 

satisfying the “Gating and Data Association” block. Explanation of IMM operation 

begins with appropriately assigned observed data and follows the flowchart in Figure 2.  

 
Figure 2.  An IMM flowchart depicts the major steps, inputs, and outputs of the IMM 

operation. From [4]. 

2. Model Probabilities  

 The number of possible target states determines the number of models  required 

for the IMM. A sufficient collection of models is required to cover the spectrum of 

anticipated target motion. The transition between states is described by both conditional 

probabilities and transitional probabilities. Conditional probabilities  for  

are initially assigned a priori values, which are updated at each step .  Update is based 
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on a comparison of the received measurement  to each of the respective model state 

estimates . The probability that the target is in model state  as computed just 

after measurement data are received at time  is defined as  [4]. The 

normalized statistical distance is calculated for use in update of  and is 

 , (11) 

where the residual covariance matrix is received from 

Equation (8). The model probability update utilizes a likelihood function based on 

Gaussian statistics defined as follows: 

 ,  (12) 

where is the dimension of . The likelihood function is used to update the model 

probabilities by 

 ,  (13) 

where  is a normalizing constant from [4] and is described by 

 .  (14) 

The variable  in Equation (14) is a linear combination of both conditional and 

transitional probabilities and updated during the IMM mixing process. The updated 

model probabilities from Equation (13) assign a weighted contribution of the updated 

states estimates from the Kalman filter models. Combined estimates are generated that 

represent the most up to date estimates based on the current measurements. The 

combined estimates and associated covariance matrices are calculated as follows: 

   (15) 

and 
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 , (16) 

where  is the combined estimate from the previous time step,  is the 

estimate from the associated model, and  is the covariance matrix produced 

from the standard Kalman filter equations in each respective model [11]. At this point, 

the model probabilities and filtered estimates have been updated based on observation 

data, and all required data for IMM mixing is available.  

3. IMM Mixing 

The IMM mixing satisfies several objectives. First, “the IMM approach provides 

the most effective framework for adaptive filtering.”[4] Each set of observation data 

allows discrimination or favoring of the model that it is most closely associated with.   

Additionally, “the mixing process uses the accurate filter state estimates to correct the 

less accurate filter state estimates” [4]. The process analyzes each possible target 

transition and adjusts the state estimates based on the most likely target state. Mixing 

occurs after update of the state estimate and covariance matrices but before prediction. 

A Markov transition matrix is utilized to describe the probability  that “the 

target will make the transition from model state  to model state ” [4]. For a target 

characterized by three states, the transition matrix is  

 . (17) 

The probabilities contained within  are developed a priori and remain constant. Each 

row must sum to unity to prevent degradation of the estimates contributed by the 

associated model.  

While the Markov matrix describes the estimated transitions between models, a 

parameter describing actual recent model transitions is required to update model 
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probabilities.  “The conditional probability that the target made the transition from state  

to state  at time  is ” [4]. Conditional probability differs from  in that 

the transition from state  to state  occurs given that the target is initially in state . 

The relationship between the conditional and transitional probability is  

 ,  (18) 

where  is the probability after interaction that the target is in state  and can be 

defined as 

 . (19) 

Once transitional probabilities are calculated for each state, a mixing process is 

executed to produce new filtered state estimates and Kalman filter covariance matrices. 

For all models the state estimates and covariance matrices are calculated 

using intermediate values described by  

   (20) 

and  

 .  (21) 

The IMM mixing is complete.  

The prediction step used in the Kalman filter is then applied to produce a 

predicted state estimate and a Kalman filter covariance matrix as follows:  

   (22) 

and  

 . (23) 
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The “State and Covariance Prediction” block of the IMM flowchart in Figure 2 is 

satisfied by Equation (22) and Equation (23). Upon receipt of new observation data, the 

IMM process is repeated.  

C. JPDAF  

Ideally, no ambiguity exists in regards to which track is associated with a given 

observation; however, such an assumption is an oversimplification in tracking scenarios. 

Proper assignment of measurement data to the correct target is vital to maximizing the 

performance of both the Kalman filter and the IMM. To address issues of track 

assignment, the probabilistic data association (PDA) method associates measurement data 

with established tracks and removes extraneous measurements.  The JPDAF is an 

extension of the PDA to a multiple target scenario and serves to resolve any existing 

correlation conflict. JPDAF integration with the IMM is described in Section D. 

We will use an example posed in [4] and illustrated in Figure 3 below to describe 

the operation of the JPDAF. The scenario assumes two tracks have been established. The 

variables P1 and P2 in Figure 3 represent predicted states from the two established tracks. 

Both predictions are located at the center of the respective circular gates and are 

established along each target’s associated track. A circular gate is used in this example 

for ease of computation. Gate size is dependent on noise characteristics and potential 

target maneuver parameters defined within the target model. Three observations are 

received simultaneously and are denoted by O1, O2, and O3. All three observations are 

considered for validation since each is located within one or both track gate(s). The 

probability that a true target observation will fall within the correct track gate  is 

assumed to be one.  
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Figure 3.  A typical JPDAF scenario shows the need for conflict resolution. P1 and P2 

are the predicted track positions. O1, O2, and O3 are the three observations 
that fall within the track gates. From [4]. 

A hypothesis matrix is constructed to track each possible observation and track 

combination, including the possibility that none of the observations belong to either track. 

A probability is calculated for each hypothesis based on a Gaussian likelihood function. 

Each track  is related to each observation  by 

   (24)  

where  is the measurement dimension [11]. To fully describe the probability of the 

hypothesis, the probability of detection and a false return density function  are 

included. The full development of the probability equations are given in [4], but the 

equations used for the scenarios dealt with in this research are contained in Table 1.  
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Table 1.   A JPDAF hypothesis matrix is constructed for the scenario presented in 
Figure 3 with a probability of detection equal to one. From [4]. 

Hypothesis Number Track Number Hypothesis Likelihood 

  P1 P2 

1 O1 O2   

2 O3 O2   

3 O1 O3   

4 O2 O3   

 

The hypotheses in Table 1 are constructed by listing all possible outcomes under 

each track. The scenario in Figure 3 shows that all three observations (O1, O2, and O3) 

may be associated with track one (P1), and only observations two and three may be 

associated with track two (P2). Observation one does not appear in the track two column, 

but all other combinations of tracks and observations are represented. For example, 

hypothesis one states that observation one (O1) is assigned to P1 and that observation two 

(O2) is assigned to track two (P2). Observation one lies outside the gate of P2 and is, 

therefore, not assigned to P2. We will assume that the probability of detection  is one, 

meaning that each track always receives a measurement. This is a significant assumption 

and greatly reduces the number of hypotheses that must be considered. For space-based 

sensor tracking of an exo-atmospheric ballistic missile, the assumed  is not unrealistic. 

The hypotheses likelihoods are computed but require normalizing.  Normalized 

probabilities are calculated by 

 , (25) 

where  is the total number of hypotheses. The probability that O1 is associated with P1 

is calculated using Table 1 as follows: 
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 , (26) 

where  is the probability that O1 belongs to P1. The remaining probabilities for track 

one  and  are computed in the same manner and must all sum to one. Track two 

probabilities are computed the same way. Notice that  is zero because O1 does not fall 

within the gate of P2.  

The information obtained from each track’s association with each observation is 

incorporated into the standard Kalman filter equations. To account for multiple 

observations in Equation (4), a weighted sum of residuals is taken by 

 , (27) 

where . The state estimate in Equation (5) is calculated by 

setting  equal to . The Kalman covariance matrix requires inclusion of 

uncertainties from each of the observations. If we assume a valid observation falls within 

each track gate during each discrete time step, the Kalman covariance is the sum of 

Equation (9) with  

 .  (28) 

D. JPDAF AND IMM COMBINATION 

The JPDAF and the IMM integration require time phasing of their respective 

parameters. Model probabilities , state predictions , and Kalman 

filter covariance matrices  are required from the IMM during each discrete 

time step.  The JPDAF is responsible for determining the gate regions for each model and 

validating observations for track update that fall in each model gate. Blackman and 

Papoli outline a process discussed below for integration of all parameters in [4]. Once 

new observations are received, the IMM submits a likelihood function for each model: 
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 ,  (29) 

where  is the total number of observations. The inclusion of all hypotheses defined in 

the JPDAF causes Equation (24) to differ from the previously defined likelihood function 

in Equation (16). Model probabilities are updated using Equation (17). The state 

estimates and the covariance matrices are then updated for each model as discussed in the 

JPDAF following Equation (22). The final step includes the final steps of the IMM 

mixing process to produce new filtered state estimates and Kalman filter covariance 

matrices as described in Equation (14) and Equation (15).  

E. SPLIT TARGET TRACK GENERATION 

The example used above to describe the JPDAF operation dealt with track 

maintenance and ignored the formation of tracks. We will assume that the missile’s track 

is reasonably developed based on external radar information and that other targets of 

interest are in the vicinity of the missile (e.g., deployed decoys). Thus, any measurements 

that occur within the missile’s gate region and that cannot be associated with an existing 

track will be a candidate for a split target. An automatic track formation process is 

described in [10], but we will apply a split model within the IMM framework to support 

track generation.  

The modeling of decoy deployment follows the methodology described in [3]. For 

our purposes, a decoy is synonymous with a split target. Tracking a split target adds two 

models to the IMM. The first model, the “just split” model, contains a stacked state 

vector and takes advantage of the cross-covariance terms containing the past common 

history of the two targets. The second model associated with the split continues track 

maintenance in the same manner that the missile track is being updated. All splits are 

contained within this model, and the JPDA is used to discriminate between split targets.  

The “just split” model described below is discussed in [3] and contains several 

assumptions. The model begins with a single predicted measurement from the previous 

time step, and two validated measurements, as discussed in the JPDA, are present within 
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the missile target gate at the current time step. Scenarios containing greater than two 

measurements (even if two splits are occurring simultaneously) are not covered in this 

research. Additionally, we will assume that once a target splits, no recombination occurs; 

a reasonable assumption due to the likely maneuver of the missile once a decoy is 

deployed.  Therefore, the recombination model discussed in [3] has been ignored.  

Once two measurements are received, a stacked vector consisting of a duplicated 

state is created, resulting in  

 ,  (30) 

where  represents the “just split” model [3]. In addition to the same state, the predicted 

state is identical as well and is stacked in the same manner. The common predicted 

measurement then becomes 

 ,  (31) 

where , , and the just split Kalman gain is 

 . (32)   

Each of the parameters contained within the Kalman filter equations require a 

similar stacking for the dimensions of the matrix calculations, including the measurement 

noise covariance  and the measurement matrix . The covariance associated 

with the prediction will be constructed by 

 . (33) 

The combined covariance matrix from Equation (16) serves as the initial value for each 

of the covariance terms listed in Equation (33). The off-diagonal covariance matrices 

contain the correlation between the new estimates and the past common history [3].  
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With the formation of the split track underway, we are now interested in 

decoupling the targets and tracking each independently. The validation regions discussed 

in the JPDA become useful metrics in determining a “no overlap” test explained in [3]. 

The already developed missile gate region is compared to a newly developed split target 

gate region. As the targets separate such that the two gate regions no longer overlap, we 

assume the two targets are completely decoupled. The “no overlap test can be described 

by 

 , (34) 

where g is chosen as the tail end of a chi-squared density such as one percent [3]. Once 

the threshold for decoupling is met, both targets can be tracked independently with 

existing state estimates and covariance matrices.  

F. TARGET DELETION 

We have chosen to suspend split target tracking at a specified distance between 

the split target and the missile. The split target is likely to transit outside the interceptor 

field-of-view before software interaction is required. However, split target tracks may be 

of interest for kill vehicle adjudication or to simplify the JPDA problem should the split 

target return within the missile gate. For the purpose of the simulation, we choose a 

threshold range from the missile in which to discontinue tracking of 80,000 meters; 

although, split target measurements continue to be plotted.  
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III. MODEL CONSTRUCTION 

A. OVERVIEW 

One master script file and several function files were constructed and run in 

MATLAB 2012a. We assume measurement data is converted from likely range and 

bearing data to a Cartesian coordinate system; we ignore mathematical errors associated 

with such a conversion. A variable naming scheme is used throughout the MATLAB files 

because the same parameters are duplicated between models. In general, a number 

corresponding to an associated model follows each repeated variable (i.e.,  denotes the 

state transition matrix for model three). All units are in meters. 

We chose four models to fully describe missile and split target tracking. 

Assumptions include point mass modeling of both the target missile and the split target 

with motion described by linear control dynamics. Model one consists of a missile in 

straight-line motion at constant velocity. Model two simulates missile maneuver at a 

constant turn rate. Model three detects and analyzes for a potential target split from the 

missile. Lastly, model four maintains track on all confirmed target splits and discontinues 

tracking when the 80,000-meter threshold is reached.  

B. MASTER SCRIPT FILE 

The master script file defines common variables utilized by each of the models, 

generates true target vectors, and calls function files as required. The initialization values 

chosen are discussed as we present them and are embedded throughout the model 

construction explanations. We used a sample time of 0.01 seconds over 1,000 samples, 

resulting in a total simulation time of 10 seconds.  

1. True Missile Motion 

The missile vector is modeled as a point mass containing two degrees of freedom. At the 

beginning of each simulation, the true target state vector is set to   
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  (35)  

where  describe the position in the Cartesian plane and  describe the 

velocity in each dimension. The target vector is initialized to resemble a DF-41 Chinese 

ICBM with a velocity of 2670 m/s and a constant altitude of 1,000 km and is taken from 

open source information. The state transition matrix for straight-line motion is 

 , (36) 

 where  is the discrete step time of 0.01 seconds [12]. Thus, SLM results as each 

time step increments the  position vector by 25 meters and the  position vector by 23 

meters. Each six by one true target motion vectors for SLM is collected in a matrix 

throughout the simulation.  Each column represents the target state at a specified 

measurement time step. 

Although the simulation models motion and measurements in all three dimensions, 

the scenarios analyzed below assume a constant value of  for true target motion. All 

plots are presented in the  coordinate plane. The model for target acceleration 

assumes a constant speed turn in the  plane with a state transition matrix as follows: 
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 , (37) 

where  is a constant turn rate and  is the discrete time step [12]. The turn rate value 

was selected such that a 20  turn is simulated. The turn is initiated and terminated 

according to specified discrete time step values. Any combination of SLM and turning in 

either direction is possible.  

2. True Split Target Motion 

Actual decoy deployment is triggered at a specified time step  as a target split. 

The decoy (split target) is initialized using the current value of the true target. The 

velocity component(s) of the decoy are then modified to create separation from the true 

target over time. We assume linear motion of the split targets, leading to the same 

transition matrix for  as was used for SLM ( ). No computational changes are made 

as the true split vector is analyzed in model four, but the same transition matrix is 

relabeled as  and the true split state is relabeled as  for state estimate comparison 

purposes.  

3. Sensor Noise 

We assumed a fixed sensor with a five-meter error in each dimension ( , , and 

). A white Gaussian process is used to generate the sensor noise  from Equation 

(2). The resultant measurement covariance matrix is 
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 , (38) 

where  ,  , and  are equal to 25 meters. Each of the Kalman filters operating in 

parallel utilizes this parameter. “Typical tracking error decreases are moderate (on the 

order of 25 percent)…unless very accurate, high update rate measurement data are 

available.”[9] Based on greater than a 40 percent drop in mean distance errors with the 

specified tracking error and sampling rate, we assess our estimations to be reasonable. 

4. Plant Noise 

Plant noise  from Equation (1) is modeled as a white Gaussian process that is 

independent of sensor noise and is used to describe un-modeled parameters [12]. The 

plant noise covariance matrix is 

 , (39) 

where  is the discrete time step of 0.01 seconds per sample and  is a scalar value 

used to differentiate between the different model states [12]. The value of  is 

maintained at 10 for SLM and 4,000 for a constant speed maneuver.  
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5. Model Transitions 

We restrict the transition between certain models based on both physical 

constraints and assumptions. We first assume that from SLM (model one) the missile is 

able to remain in SLM with probability , conduct a maneuver with probability , or 

split with probability  . A distinction must be made concerning the “transition” from 

model one to model three. We are not saying that the target either proceeds in SLM or 

splits, but more accurately, that a split may occur while the missile proceeds down its 

track without maneuvering. The missile is physically capable of doing both, and missile 

state estimates continue to be calculated despite a split occurring.  

We will also assume that from model two the missile is able to return to SLM 

with probability , continue to maneuver with probability , or conduct a target split 

with probability . The same argument as above applies, and a potential target split 

(model three) occurs simultaneously with continued missile maneuver (model two). We 

considered setting  to zero considering the most likely evasion technique to be a 

deployed decoy followed by a missile maneuver. However, an equally feasible tactic may 

include deployment of a decoy during a constant turn. The approach used by Bar-Shalom, 

Chang, and Blom in [3] only account for target splits from SLM and not for a turn.  

Assuming no recombination, transition probabilities for model three and four are 

straightforward. We assume potentially split targets in model three, allowing only options 

for the target to be a confirmed split ( ) or just an erroneous measurement ( ). The 

transitional probability  also accounts for track formation, as a finite number of 

measurements are required to confirm a split target. A split track will remain in model 

four ( ) for track maintenance, resulting in a transitional probability of one.  

Now that we have identified the non-zero transitional probabilities, values must 

be assigned to each. A lack of historical ICBM flight and decoy data, at least in open 

sources, forces estimated values. Assuming a dominant straight-line trajectory and low 

split target density, the Markov chain transition matrix was established as 
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  (40) 

An unnecessary amount of complexity and restriction was realized soon after 

model construction when following the approach presented in [3], which led to the 

generation of Equation (40). The apparent sacrifice of true target accuracy as the number 

of splits increased would pose an issue for future work. Although only designed to handle 

a limited number of target splits in this research, a realistic scenario involves frequent 

splits or batch splits over the duration of midcourse flight. A rising split probability (  

and ) results in a reduction of other model transition probabilities. Instead we decided 

to limit the IMM model transitions to model one and model two. Multiple observations 

falling within the true target gate will now trigger a transition to model three, a potential 

target split. Thus, the new transition matrix for the IMM becomes 

 . (41) 

The “modelprob” function file utilizes the values in Equation (40) to accomplish IMM 

mixing.  

C. MODEL FUNCTIONS AND INTERACTIONS 

Each model generates estimates for its associated trajectory. The process used to 

generate estimates from the true target vectors is described below for each track. The 

master script file triggers when each model (contained within function files) is required 

based on the discrete time step .  

1. Straight-Line Motion 

A standard Kalman filter is applied to track true target SLM. Sensor noise is 

added to the true position vector by multiplying each dimension of the sensor covariance 

by a pseudorandom, normally distributed vector of the same size, creating measurements 
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with simulated zero mean, white noise. The state and covariance are updated in 

accordance with Equation (6) and Equation (10), respectively. A distance error 

calculation is performed following state estimate update. The model outputs the state 

estimate and covariance, the noisy measurements for use in model two, measurement 

error, and the distance error. The function file “modelprob” collects all necessary data 

from model one and model two to conduct IMM mixing, update model probabilities, and 

update the filtered estimates. The intermediate values for state estimate and covariance 

presented in Equation (20) and Equation (21) are sent out from “modelprob” to a separate 

function file, “prediction”, which generates the final model estimates from Equation (22) 

and Equation (23). 

2. Constant Speed  

The second model receives the noisy measurements generated in model one and 

conducts the Kalman filter update equations. Distance error is also calculated and sent as 

an output, along with the updated state and covariance estimates.  

3. Potential Split Target  

Model three requires both true target and split target vectors to generate noisy 

measurements for both. The model one function file is not called when analyzing a split. 

The noisy measurements, along with other required variables, are stacked and prepared 

for split target evaluation as discussed in Equation (30) through Equation (33). A JPDA 

calculation is conducted utilizing Equation (24) for a two observations and two track 

scenario. The measurement vector is stacked according to the JPDA filter results, and 

state and covariance updates are calculated while stacked. The state estimates and 

associated covariance matrices are separated out. State estimates and covariance matrix 

predictions are calculated for model three and are available for output. The updated 

model one estimates and covariance matrix are sent to “modelprob” and “prediction” just 

as when no split is being analyzed for.  
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4. Split Target Tracking  

The fourth and final model receives the un-stacked state estimates from model 

three and continues track maintenance on all split targets. The true split target tracks are 

received, and sensor noise is added to the measurements. Standard Kalman filtering 

occurs and predicted state estimates result. When the received measurement exceeds the 

state estimate by greater than 80,000 meters, tracking is terminated.   

 



27 
 

IV. MATLAB SIMULATIONS 

A. SIMULATION SETUP 

Simulations were designed to test the ability of the multiple filter models to track 

a target through maneuvering turns and maintain the correct track as decoys are deployed. 

Mean distance errors are calculated over 100 Monte Carlo simulation runs. 

B. INDEPENDENT EVALUATIONS 

1. IMM Missile Tracking 

Accurate tracking of the ICBM through a turn is the goal of the first simulation. 

The scenario establishes a true target track beginning in SLM, executing a turn from 

sample  until sample  and then returning to SLM. The combined estimate 

track is used as a measure of IMM tracking performance. To validate the additional 

computations in the IMM mixing process, the individual estimates from model one and 

model two are compared to the combined estimates. The model one and model two 

estimates  are collected following the Kalman filter update (Equation 5), 

but the state estimates  being updated were filtered from the IMM mixing 

process in the previous time step . The model one and model two estimates represent 

the quantities at the top of the IMM flowchart in Figure 2, and the combined estimates 

represent the updated filtered estimates.  

For the first simulation, the number of samples is 10,000 with a sample rate of 

100 samples per second. The true target motion is shown in Figure 4 on an -   

coordinate plane and provided as an overview of the simulation. The boxes in Figure 4 

correspond to the location in which selected focus areas in the scenario are taken from. 

The locations include steady state SLM, the onset of target maneuver, and steady-state 

maneuver. The track layouts and distance error plots are presented and discussed at each 

focus area.  
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Figure 4.  True target motion on an -  plane identifying the location of areas of focus 

for follow-on figures.  

The combined estimates provided better tracking performance in both straight-

line and accelerating scenarios than the individual state estimates. The track layouts 

displayed in Figure 5 contain only a snapshot of the relationship between the tracks 

during SLM. The position of each track relative to the true target (the ICBM) track is as 

expected. During straight-line motion, model one is expected to be closer to the true 

target and model two further away. The combined estimate track sits closer than even the 

straight-line estimate track for a majority of the time. All tracks demonstrate an 

improvement over the received measurements. 
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Figure 5.  True target track, IMM estimate tracks, and measurements during straight-line 

motion on a Cartesian plane.   

The track layout displayed in Figure 6 follows a similar discussion to those seen 

in Figure 5 except for the maneuvering scenario. Although simply a snapshot (the layout 

between two measurements is shown), the tracks maintain this pattern for a majority of 

the time. In this case, model two estimates are closer to the true target track, followed by 

the combined estimates, then track one estimates, and finally the measurements. The 

combined estimates also tend to lie closer to the model one estimates despite a target 

maneuver based on the probability assignments given in Equation (40).  
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Figure 6.  True target track, IMM estimate tracks, and measurements during a constant 

speed maneuver in the Cartesian plane.   

The results contained in Figure 7 are provided to capture the relationship between 

the estimates and further prove the effectiveness of the IMM process. The tracks progress 

from the upper left corner of the figure to the lower right portion. As expected, the model 

one track continues to be furthest from the true target track during a constant speed turn. 

In the upper left portion of Figure 7, the measurements are near the true track and 

increase the model two probability  from Equation (17). The values contained in 

Equation (19) and in Equation (20) are driven up as a result of  going up and cause an 

immediate shift of the combined estimates towards the model two track. As the 

measurement vector diverges from the true track and toward the model one estimates,  

goes down and the model one probability  goes up. The contribution from model one, 

which is further from the true track, drives the combined estimates away from the true 
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track. In this snapshot, the measurements drive the location of the combined estimates 

within a channel consisting of model one and model two. This process is repeated on 

each time step and causes slight variations in the combined estimates.  

 
Figure 7.  True target track, IMM estimate tracks, and measurements during constant 

speed turn in a Cartesian plane.   

The relationship between the track estimates and true target track are quantified 

by distance error. The summation and averaging of the combined estimate variations over 

several (100 Monte Carlo) simulations reveals their performance. During SLM the results 

in Figure 8 are as expected. Model one contains the least error, followed by the combined 

estimates, and then model two. Estimated distance error values exhibiting a reduction of 

nearly 50 percent of measurement error validate performance of the IMM filter.  
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Figure 8.  SLM mean distance errors of IMM estimates with mean measurement error as 

a reference. 

The transition between SLM and a constant speed turn sees a reduction in error 

when using an IMM filter, but the magnitude is still significant. The combined estimates 

distance error lies directly on top of the distance error for model two in Figure 9. The 

estimates take approximately thirty-five samples (0.35 seconds with a 0.01 sampling rate) 

to return below measurement error and another 40 samples (0.4 seconds) before returning 

to steady-state. The transition back to SLM duplicates the results seen in Figure 9. A later 

comparison with the Kalman filter proves these transition times in both directions to be 

very reasonable.  
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Figure 9.  Mean distance error of IMM estimates and mean measurement error during a 

constant speed maneuver initiated at sample time  

The distance errors associated with a constant speed turn replicate those seen 

during straight-line motion and exhibit only half of a meter up-shift towards 

measurement error. A combination of transition probabilities (  and 

) favoring model one, IMM based prediction methods, and high process 

noise ( ) during the turn compared to SLM ( ) take away from model 

two estimates replicating a true turn. These effects also drive the model probability 

for model two down. The result is seen in Figure 10 as model one retains the lowest 

distance errors.  
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Figure 10.  Constant acceleration mean distance error of IMM estimates with mean 

measurement error as a reference. 

Another useful tool in assessing IMM performance is the model probability 

values and variations. These parameters give a clear indication of how well the IMM 

reflects reality. The probabilities shown in Figure 11 are averaged over 100 samples due 

to the vast amount of model probability value switching that occurred, particularly during 

the turn. Prior to the turn, model one probability was greater but not drastically. At the 

onset of the turn (at sample 2,000, displayed in Figure 11 as sample 20), model two is 

assured. However, as the transition to steady-state occurs, the IMM becomes less certain 

that a turn is occurring. The transition back to SLM is falsely identified as an assured 

target turn, when, in fact, completion of the turn is being identified.  
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Figure 11.  Model probability averaged over 10 samples during IMM mixing with the 

following transitional probabilities: . 

The transitional probabilities used in the simulation described above were 

modified based on the inaccuracy of those original estimated in Equation (40). A second 

simulation is presented to show the significance of the adjustment. The only parameters 

adjusted from the above simulation were  and . We assumed that maneuvering 

would be minimal and estimated the values accordingly (  and  ). The 

simulation resulted in higher distance errors in each of the estimates during the turn, as 

seen in Figure 12. The combined estimates became dominated by model one. The SLM 

and peak model transition errors were unaffected, but an analysis of the model 

probabilities indicated a major problem that can be seen in Figure 13. The IMM assumed 

the target remained in model one during the entire simulation with the exception of the 

transitions.  
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Figure 12.  Constant speed turn mean distance error of IMM estimates with mean 

measurement error as a reference. 

 
Figure 13.  Model probability averaged over 10 samples during IMM mixing with the 

following transitional probabilities: .  
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Further adjustments to the transition probabilities proved only marginally 

effective. The values used in the first simulation were adequate to track the missile 

through a turn. We assessed the IMM performance to be sufficient and, when paired with 

the JPDAF, capable of tracking the missile during split target tracking. All future 

simulations will ignore the model one and model two estimates and be evaluated based 

on combined estimates only.  

2. Split Target Detection and Tracking 

True split target tracks and model parameters were adjusted in the following 

simulation to display split track generation ability. The conditional probabilities, process 

and sensor noise, sampling frequency, sample length, and number of simulation runs 

remain unchanged. The generation of a true split track drives model three to generate 

measurements for the split and attempt track formation. The transition between models 

three and four is the focus, and a parameter represents the number of samples model 

three processes, initially set to five. 

 
Figure 14.  True target motion focus area for follow-on figures in analysis of target split 

simulations.  
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The second simulation begins in SLM with target splits occurring at sample 

 and at sample . The entire simulation of 1,000 samples (sampling rate 

remains at 100 samples per second) is contained within Figure 14. The locations in which 

the follow-on figures are taken are also displayed in Figure 14.  

The convergence of the filter estimates on the split target is shown in Figure 15. 

Although an unlikely decoy deployment scenario, the simulated split shows the ability of 

the filter to correct to a drastic change of original estimates (nearly 90 degrees in this 

case). The transition to the red line corresponds to the transition to model four. The lower 

tracks represent the missile and combined estimates and are where model three estimates 

begin. The results contained in Figure 16 show an enlargement of the conditions in 

Figure 15 at the split junction. Clear divergence of the model three estimates occurs after 

three samples. Model four takes over track maintenance and is indicated by the solid blue 

line following the green line in Figure 16. 

 
Figure 15.  Split target estimates converging on split target from SLM. 
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Figure 16.  Model three and model four transitions during split target detection from SLM.  

The simulation continued by implementing a turn from sample  to 

 and generating a second split at  The same color scheme as above is 

applied to the true and estimated tracks for the split a from constant speed maneuver. The 

small angle of separation shown in Figure 17 allows the split estimates to converge more 

quickly on the true target track. On the other hand, the small divergence of the split track 

causes the model three estimates to not noticeably diverge in Figure 18 until about the 

fifth sample.  
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Figure 17.  Split target estimates converging on split target from constant acceleration. 

 
Figure 18.  Model three and model four transitions during split target detection from 

constant acceleration.  
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The stacked vector method used in model three causes a linear increase in mean 

distance error over a short period of samples, as seen in Figure 19. We experienced three 

major factors based on simulations that affect the magnitude of model three error: the 

angle of separation between the true target track and the split target track, the missile 

state, and the relative speed of the split to the missile. The model three estimates are 

passed to model four, which receives an additional measurement and performs a Kalman 

filter update. Hence, the maximum mean distance error seen from model three is reduced 

in one estimate to the initial mean distance error seen in Figure 19. Both split tracks 

require about 25 samples to match measurement error and another 25 samples to reach a 

common steady-state error value, totaling a half of a second from receipt of model three 

estimates to nearly one-quarter of measurement error.   

 
Figure 19.  SLM and constant acceleration mean distance errors during target splitting 

track formation.   
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Figure 20.  SLM and constant acceleration mean distance errors observed during split 

target track maintenance.  

The combined estimate performance is reduced as a result of the model three 

stacked vector method. Although difficult to ascertain from the track layout during the 

simulation, the mean distance errors shown in Figure 20 show a 20-meter increase for 

straight-line motion and thirty-five meter increase for constant acceleration. The 

combined estimates require approximately 60 samples to return to steady-state following 

each split evolution. The steady-state errors are consistent on either side of the respective 

splits; however, the mean distance error during the turn is raised to only half of a meter 

below measurement error on average. The model one and model two transition errors 

seen in Figure 9 are duplicated in Figure 21.  

 



43 
 

 
Figure 21.  Combined estimate mean distance error versus measurement error seen during 

target splitting. 

The next simulation analyzes the effects of raising the number of measurements 

that model three filters before transitioning to model four. For a split target track that 

remains significantly close to the true target track (i.e., within measurement error), further 

model three analyses may be required to ensure sufficient track separation before split 

target confirmation. The recorded common past history maintained by the stacked 

covariance matrix would likely be more accurate than relying on the JPDA with no cross-

correlation between the measurements.  

The number of measurements analyzed by model three  was raised to fifteen with all 

other parameters being the same as the  simulation. Track formation in Figure 22 

(analogous in position to Figure 16) and Figure 23 (analogous in position to Figure 18) 

are improved but increasingly lags the true split vector. The mean distance error 

continues to increase linearly as seen in Figure 24. The time required for the split 

estimates to converge on the split target were minimally effected and resulted in plots 

identical to Figure 15 and Figure 27. Therefore, to minimize the linearly expanding error 

and still be able to generate a track, a value of  will be used.  
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Figure 22.  Target split during SLM with a raised number of model three samples ( ). 

 
Figure 23.  Target split during constant acceleration with a raised number of model three 

samples ( ). 
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Figure 24.  Model three mean distance error versus a greater number of samples for each 

target split. 

C. COMPARATIVE ANALYSIS WITH A STANDARD KALMAN FILTER 

1. Kalman Filter Setup 

A standard Kalman filter was created and run in parallel with the IMMJPDA filter 

for split target comparison purposes. The comparison is intended to evaluate if the 

additional computing of the IMMJPDA results in increased split detection performance 

over a basic algorithm. All parameters of the Kalman filter are completely independent 

from the IMM and JPDA operations.  The Kalman filter discriminates between the 

measurements by choosing the one with the smallest distance from the predicted track 

position.  Mean distance error is calculated following state and covariance update using 

the norm between the estimated value and the measurement. The plant noise was adjusted 

to allow suboptimal performance during SLM in exchange for reasonable tracking 

capability during target maneuver. The Kalman can be adjusted to perform better in either 

of the target states but not both. The steady-state mean distance errors can be seen for 

SLM in Figure 25 and for a constant velocity maneuver in Figure 27. The peaks of the 

distance errors in Figure 26 were matched as closely as possible for comparable 

maneuvering tracking.  
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Figure 25.  Comparison of Kalman and IMMJPDA filter mean distance errors during 

steady state SLM. 

 
Figure 26.  Comparison of Kalman and IMMJPDA filter mean distance error peaks 

during transition from SLM to constant acceleration. 
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Figure 27.  Comparison of Kalman and IMMJPDA filter mean distance errors during a 

constant acceleration turn. 

2. Scenario Setup 

The scenarios designed for comparison are intended to replicate decoy 

deployment and follow-on ballistic missile evasion tactics. The exo-atmospheric 

environment allows decoys to replicate true target motion. The true target and split target 

vectors are presented and the results are summarized in Table 2. A single simulation 

consists of 1,000 samples. Each scenario is used to generate 100 Monte Carlo simulation 

runs. The filters are evaluated based on their ability to maintain true target track.  

Two performance criteria are used. First, if the final mean distance error value of 

the simulation exceeds a threshold value (approximately five times the peak values seen 

in Figure 26), we assume the decoy has tricked the filter. The percentage of success out 

of 100 runs is annotated in Table 2.  Secondly, a counter is established to determine when 

each filter chooses split target measurements over true target measurements, representing 
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the filter being tricked by the decoy at that time step. The measurements associated with 

the filter tracking the decoy are removed. The remaining number of faulty measurements 

associations represents isolated instances during successful target tracking where decoy 

measurement association was chosen. Two splits occur in each scenario. Successful 

tracking percentage and number of faulty measurement associations are recorded per 

simulation (1,000 samples) for each split separately.  In general, divergence from the true 

target is about 20 degrees for the first split and by less than 10 degrees for the second 

split. The distinguishing features between the scenarios are the split locations and the 

varying target state before and after the split.  

Scenario one is SLM with target splits at  and . The second split 

is intended to parallel the true target track.  The layout of true target tracks is illustrated in 

Figure 28. 

 
Figure 28.  Scenario one for comparison between the Kalman and IMMJPDA filters. 



49 
 

The second scenario contains the most likely method of decoy deployment and 

missile maneuver. The split occurs at , followed by a turn from  to 

. The second decoy is deployed at  and followed by a turn from  

to . The true target and split vectors are shown in Figure 29.   

 
Figure 29.  Scenario two for comparison between the Kalman and IMMJPDA filters. 

Although a constant missile maneuver is detrimental to fuel consumption and 

increases vulnerability to tracking systems, the third scenario is included for a complete 

analysis of each target state. The missile deploys decoys and maintains constant velocity 

throughout the simulation while maneuvering, as shown in Figure 30. 
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Figure 30.  Scenario three for comparison between the Kalman and IMMJPDA filters. 

The fourth scenario tests the feasibility of tracking a decoy during the transition 

from SLM to constant speed acceleration. The first split occurs 10 samples following the 

commencement of a turn. The ten-sample delay (instead of a 25-sample delay) was 

chosen to prevent an advantage to either filter and was chosen based on the results of 

Figure 26. The turn is maintained for 200 samples before returning to SLM. The second 

split is deployed under the same conditions but with significantly less divergence from 

the missile. The true target vectors can be seen in Figure 31.  
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Figure 31.  Scenario four for comparison between the Kalman and IMMJPDA filters. 

Similar to the previous conditions, the fifth scenario analyzes the ability to track a 

decoy through a transition from constant velocity acceleration to SLM. Distance error 

spikes occur during model transitions despite the direction as seen in Figure 21. The 

missile begins in a turn and transitions to straight-line motion followed by a split 10 

samples later. The second split is under similar conditions, and both split locations can be 

seen in Figure 32. 
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Figure 32.  Scenario five for comparison between the Kalman and IMMJPDA filters. 

The final scenario involves the missile maintaining SLM throughout and 

deploying both splits within five samples of each other. The first split is deployed from 

the left side of the missile at , and the second is ejected at  from the right 

side of the missile. The vicinity of both splits to the true target is identical to the second 

split in scenario one. No visual plot is included for this scenario, but the results are 

included in Table 2.  The results for this scenario are expressed as a single event and are 

not differentiated between the two splits.  

3. Results 

The IMMJPDA filter displayed improved missile tracking performance and decoy 

avoidance over the tuned standard Kalman filter during the specified scenarios. The 

results between the two splits of the first scenario show the benefits of the JPDA filter 

over a simple nearest neighbor algorithm.  

The second and fourth scenarios validate the additional computations required of 

the IMMJPDAF over the standard Kalman filter. We expected a significant drop in the 
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ability to maintain true target track given the large distance error during model switching 

in comparison to sensor error. The successful tracking of the true target by the 

IMMJPDAF in scenario two and scenario four discredit the concerns about IMMJPDAF 

degradation between model transitions. The number of faulty measurement associations 

in both scenarios highlights a need for model improvements. However, these results 

prove that the combination of the IMM and the JPDA can compensate for simple target 

models. 

The ability to track a decoy deployment through a turn is proven in scenario three. 

A repeating trend throughout each simulation is the effect of the non-acting model 

estimate upon the existing model. The increased number of faulty samples over the 

standard Kalman filter is explained by the model one estimates that tend to associate 

more with the split target in this scenario. The flawless success percentage proves 

adequate model transition probabilities to allow the filter to self-correct with the model 

two estimates.  

Despite scenario five being a non-traditional decoy deployment strategy, the 

IMMJPDAF performed as expected and similarly to scenarios two and four. The results 

of these conditions show consistent performance through model transitions.  

The results of the final scenario suggest the IMMJPDAF may be suitable for 

ICBM tracking in a high decoy density scenario. The decoys maintained essentially a 

constant track (each velocity component was offset by merely 0.01 meters per second in 

each direction for both decoys) to the missile, yet tracking accuracy was maintained. The 

combination of target track gates and hypothesis scoring yielded significant 

improvements, especially when compared to the standard Kalman filter.  
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Table 2.   Performance summary of the Kalman filter and the IMMJPDAF under 
simulated ICBM decoy deployment and maneuver scenarios. Refer to 
section two (Scenario Setup) for an explanation of table organization. 

Scenario Split Number 

Kalman Filter IMMJPDA Filter 
Success 

(%) 
Faulty 

Measurement 
Associations 

Per  
Successful 
Simulation 

Success 
(%) 

Faulty 
Measurement 
Associations 

Per  
Successful 
Simulation 

1 1 100 0.25 100 0.14 
2 71 1.3 100 0.35 

2 1 0  100 254.6 
2 0  100 22.1 

3 1 100 0.04 100 0.21 
2 100 0 100 0.16 

4 1 0  100 23.1 
2 0  100 147.8 

5 1 0   100 122.1 
2 0   100 176.4 

6 1 59 0.1 100 0.71 2 
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V. CONCLUSIONS 

A. SUMMARY OF RESULTS 

1. IMM 

With regard to ICBM tracking, the IMM proved to be capable during both steady- 

state and maneuvering conditions. For the given conditions, the estimates resulting from 

the IMM mixing process received a reduction from measurement error of 50 percent on 

average. The degradation of the individual model estimates was minimal. A significant 

amount of iterations was required to find optimal values for transition probabilities . 

Even with the determined values for , the model probability transitions, especially 

during a constant velocity maneuver, were frequent and often occurred between each 

sample. For targets with the likelihood of transitioning between established models often, 

this method is appropriate. However, for the purposes of an ICBM that prefers deploy 

decoys to conducting maneuvers, the necessity to account for continuous contact 

maneuver is reduced. In addition, the distance errors seen during model transitions are 

concerning due to the likelihood of decoy deployment during those periods. The 

IMMJPDA filter performed well during these transitions for the scenarios tested but 

could become a concern under higher split target densities.   

With regard to split target tracking, the IMM provided a convenient framework in 

which to generate a split target and allowed for a seamless transition for follow-on track 

maintenance. We introduced a non-traditional IMM approach where the two models 

regarding the split target are not subject the standard IMM processes. Initially stacking 

the combined estimates to generate the split track allowed the common history of the 

target and decoy to be exploited. The decoy track generation caused an increase in 

distance error of the combined estimates of over two and a half times measurement error. 

The decoupling of model three and model four with the target models prevented further 

degradation of the combined estimates. Additionally, the linearly increasing model three 

errors showed that decoupling of the split target and true target sooner was best. 
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Prolonged tracking of the split target was detrimental to both the combined estimates and 

the split track maintenance.  

2. JPDA 

The JPDA was able to discriminate between true target and decoy measurements 

that fell within established track gates with minimal faulty associations. Although 

dependent on the quality of estimates provided and difficult to evaluate on its own, the 

JPDA’s comparison to the nearest neighbor algorithm implemented by the Kalman filter 

proved very effective. The generation of hypothesis is simplistic for the scenarios 

presented, but computational requirements drastically increase with additional 

measurements.  

B. RECOMMENDATIONS FOR FUTURE WORK 

1. Probability of Detection and False Returns  

The assumption that the probability of detection  is one requires a sensor that 

produces a valid measurement for each target, including all decoys, at every measurement 

time.  The assumption on no false alarms (e.g., clutter or spurious measurements) reduces 

the number of hypotheses that the JPDA filter must consider. Measurements may be 

included that do not belong to any track, or an established track may not receive an 

associated measurement at any given time interval. The expansion of the JPDA filter 

equations to include these parameters is discussed in [3]. This would result in a more 

complicated but potentially more flexible JPDA filter and is worth future exploration.  

2. Model Modifications 

The established models to describe the ICBM dynamics do not fully describe a 

body traveling in exo-atmospheric conditions.  An inclusion of the gravitational forces on 

the missile on the -dimension, rotating Earth effects [2], and the associated filter 

performance should be explored.  

As decoys become more sophisticated, the expansion of a decoy model beyond 

mimicking the trajectory of the missile may be necessary. Application of a separate IMM 
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process, complete with its own set of models, for a split target may be appropriate for 

splits determined to be a reentry vehicles.  

3. Algorithm Flexibility 

Given the existing MATLAB code as a guide, expansion to include any number 

of splits would be essential for further simulation testing. As is, the algorithms can 

support zero, one, or two splits. Any additional splits written in the same manner will 

require an increasing amount of code for each one. The additional hypothesis required for 

the JPDA and the gate-related calculations contribute to the majority of the required code 

expansion.  
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APPENDIX. MATLAB CODE 

A. MASTER SCRIPT FILE INCLUDING ALL INITIAZATIONS, ORDER OF 
FUNCTION FILE CALLS, AND GENERATION OF ALL PLOTS  

close all; 
clear all; 
clc; 
  
delta=0.01; 
nsamples=1000; 
nloops=100; 
  
%Turn start and stop times 
t_start1=300;   
t_stop1= 700; 
t_start2=1400;   
t_stop2=1600; 
  
%Split locations 
n=[1200;1503]; 
  
md1=[]; 
md2=[]; 
mdo=[]; 
md3=[]; 
md4a=[]; 
md4b=[]; 
mdk=[]; 
  
for ii=1:nloops 
     
   %Measurement matrix 
H=[1 0 0 0 0 0; 
   0 0 1 0 0 0; 
   0 0 0 0 1 0]; 
  
%Sensor Error 
se=5; 
sigmax = se;  
sigmay = se; 
sigmaz = se; 
R=diag([sigmax^2;sigmay^2;sigmaz^2]); 
  
%Target state transition matrix 
F1 = [1 delta  0    0    0 0; 
      0   1    0    0    0 0; 
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      0   0    1  delta  0 0; 
      0   0    0    1    0 0; 
      0   0    0    0    1 0; 
      0   0    0    0    0 1]; 
  
 
 
% %Initialize the target vectors 
x =     [     0;                        %x position 
           2500;                      %x velocity in m/s 
              0;                        %y position 
           2300;                      %y velocity in m/s 
           10000;                    %z position 
            0 ];                       %z velocity in m/s 
         
P1 = 10^4.*    [1 0 0 0 0 0;        %Covariance matrix 
                0 1 0 0 0 0; 
                0 0 1 0 0 0; 
                0 0 0 1 0 0; 
                0 0 0 0 1 0; 
                0 0 0 0 0 1]; 
 q1=10;        
Q1 = q1 .*  [(delta^3)/3  (delta^2)/2       0           0           0           
0; 
             (delta^2)/2    delta           0           0           0           
0; 
             0                  0       (delta^3)/3 (delta^2)/2     0           
0; 
             0                  0       (delta^2)/2   delta         0           
0; 
             0                  0           0           0       
(delta^3)/3 (delta^2)/2; 
             0                  0           0           0       
(delta^2)/2   delta];  
  
% Q1= [0  0       0   0   0   0; 
%      0  q12     0   0   0   0; 
%      0  0       0   0   0   0; 
%      0  0       0   q12 0   0; 
%      0  0       0   0   0   0; 
%      0  0       0   0   0   q12]; 
  
Qk=200*Q1;                                 
  
  
spd= 3397.06;     %in m/s 
g=-20;           % # of g's 
omega=g*9.80665/spd;                   %turn rate in radians/sec 
  
F2= [1  sin(omega*delta)/omega       0   (1-cos(omega*delta))/omega  0  
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0; 
     0  cos(omega*delta)             0    -sin(omega*delta)          0  
0; 
     0  (1-cos(omega*delta))/omega   1   sin(omega*delta)/omega      0  
0; 
     0  sin(omega*delta)             0   cos(omega*delta)            0  
0; 
     0       0                       0        0                      1  
0; 
     0       0                       0        0                      0  
1]; 
  
                     
P2 = 10^4.*    [1 0 0 0 0 0;        %Covariance vector 
                0 1 0 0 0 0; 
                0 0 1 0 0 0; 
                0 0 0 1 0 0; 
                0 0 0 0 1 0; 
                0 0 0 0 0 1];   
q2=4000;            
Q2 = q2 .* [(delta^3)/3  (delta^2)/2       0           0           0           
0; 
             (delta^2)/2    delta           0           0           0           
0; 
             0                  0       (delta^3)/3 (delta^2)/2     0           
0; 
             0                  0       (delta^2)/2   delta         0           
0; 
             0                  0           0           0           1           
0; 
             0                  0           0           0           0           
1];              
F3 = [1   delta       0    0           0 0; 
      0   1           0    0           0 0; 
      0   0           1    delta       0 0; 
      0   0           0    1           0 0; 
      0   0           0    0           1 0; 
      0   0           0    0           0 1]; 
   
Q3 = q1 .* [(delta^3)/3  (delta^2)/2       0           0           0           
0; 
             (delta^2)/2    delta           0           0           0           
0; 
             0                  0       (delta^3)/3 (delta^2)/2     0           
0; 
             0                  0       (delta^2)/2   delta         0           
0; 
             0                  0           0           0           1           
0; 
             0                  0           0           0           0           
1];  
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P3 = 10^4.*    [1 0 0 0 0 0;        %Covariance vector 
                0 1 0 0 0 0; 
                0 0 1 0 0 0; 
                0 0 0 1 0 0; 
                0 0 0 0 1 0; 
                0 0 0 0 0 1];  
             
K1 = P1*H'*inv(H*P1*H' + R); 
K3 = P3*H'*inv(H*P3*H' + R); 
Ks = [K1          zeros(6,3); 
      zeros(6,3)         K3]; 
  
  
  
F4 = [1   delta  0    0       0 0; 
      0   1      0    0       0 0; 
      0   0      1    delta   0 0; 
      0   0      0    1       0 0; 
      0   0      0    0       1 0; 
      0   0      0    0       0 1]; 
  
Q4 = q1 .* [(delta^3)/3  (delta^2)/2       0           0           0           
0; 
             (delta^2)/2    delta           0           0           0           
0; 
             0                  0       (delta^3)/3 (delta^2)/2     0           
0; 
             0                  0       (delta^2)/2   delta         0           
0; 
             0                  0           0           0           1           
0; 
             0                  0           0           0           0           
1];  
  
P4 = 10^4.*    [1 0 0 0 0 0;        %Covariance vector 
                0 1 0 0 0 0; 
                0 0 1 0 0 0; 
                0 0 0 1 0 0; 
                0 0 0 0 1 0; 
                0 0 0 0 0 1];  
             
x1h=x; 
x2h=x;        
xk=x; 
Pk=P1; 
x4a=[0;0;0;0;0;0]; 
x4b=[0;0;0;0;0;0]; 
tcorrect=0; 
xo=x; 
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Po=P1; 
  
%Intial Likelihood for each state 
u1 = 0.7; %More likely to remain in straight line motion than to turn 
u2 = 0.3; %More likely to transition out of turn and into stright line 
motion 
  
%Probability of changing state 
    p11 = 0.75;  
    p12 = 0.25;           %Probability of changing state 
    p21 = 0.45; 
    p22 = 0.55; 
  
    %Model 1 and Model 2 mixing 
    c1b = p11*u1 + p21*u2; 
    c2b = p12*u1 + p22*u2; 
  
%Matrix Initialization 
x1hm=[]; 
zn1=[]; 
em1=[]; 
x2hm=[]; 
zn2=[]; 
em2=[]; 
x3hm=[]; 
zn3=[]; 
em3=[]; 
xsh=[]; 
zn4=[]; 
x4hm=[]; 
em4a=[]; 
em4b=[]; 
xm=[]; 
x3m=[]; 
x4am=[]; 
x4bm=[]; 
xom=[]; 
znk=[]; 
xkm=[]; 
d1m=[]; 
d2m=[]; 
dkm=[];   
dom=[]; 
d3m=[]; 
d4am=[]; 
d4bm=[]; 
znkm=[]; 
znc=zeros(6,1); 
mitrick=[]; 
mktrick=[]; 
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%samples in model 3 before transition to 4 
t=1; 
  
  
  
    for k=1:nsamples 
  
        
        %Measurement matrix 
        H=[1 0 0 0 0 0; 
           0 0 1 0 0 0; 
           0 0 0 0 1 0]; 
  
        %Sensor Error 
        sigmax = se;  
        sigmay = se; 
        sigmaz = se; 
        R=diag([sigmax^2;sigmay^2;sigmaz^2]); 
  
        %Measuring Target Position 
        ztrue = H*x;                %True position 
  
        %Add sensor noise to the measurements and calculate measurement 
error 
        w=randn(3,1).*[sigmax; sigmay; sigmaz]; 
        znu = ztrue + w; 
        em = sqrt(w'*w); 
        zn1=[zn1, znu]; 
        em1=[em1,em]; 
         
  
        %Target motion step for split target 
         
             
         %Generate the first split vector 
         if k==n(1) 
            x3 = x + [0; 0.2*x(2); 0; +0.5*x(4); 0; 0];      
            x3h=xo;                         
            xsh=[xo;x3h]; 
            x3hm=[x3hm,x3h]; 
            x3m=[x3m,x3]; 
  
            Ko = Po*H'*inv(H*Po*H' + R); 
            K3 = P3*H'*inv(H*P3*H' + R); 
            Ks = [Ko          zeros(6,3); 
                  zeros(6,3)         K3]; 
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            Ps = [Po    Po; 
                  Po    Po];   
         end 
  
         if k==n(2) 
            x3 = x + [0; 0.1*x(2); 0; -0.1*x(4); 0; 0];    
            x3h=xo;                        
            xsh=[xo;x3h]; 
            x3hm=[x3hm,x3h]; 
            x3m=[x3m,x3]; 
            P3 = 10^4.*     [1 0 0 0 0 0;        %Covariance vector 
                             0 1 0 0 0 0; 
                             0 0 1 0 0 0; 
                             0 0 0 1 0 0; 
                             0 0 0 0 1 0; 
                             0 0 0 0 0 1]; 
                              
                Ko = Po*H'*inv(H*Po*H' + R); 
                K3 = P3*H'*inv(H*P3*H' + R); 
                Ks = [Ko          zeros(6,3); 
                      zeros(6,3)         K3]; 
  
                Ps = [Po    Po; 
                      Po    Po];             
         
         end 
  
         %Generate true split motion for x3 
        if k > n(1) && k<=n(1)+t 
            x3=F3*x3; 
            x3m=[x3m,x3];       
        end 
        if k > n(2) && k<=n(2)+t 
            x3=F3*x3; 
            x3m=[x3m,x3]; 
            
        end 
         
  
        %Generate true target position for x4, two splits 
        if k==n(1)+t 
            x4a=x3; 
            x4=[x4a;x4b]; 
            x4am=[x4am,x4a]; 
             
  
        elseif k>=n(1)+t 
            x4a=F4*x4a; 
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            x4=[x4a;x4b]; 
            x4am=[x4am,x4a]; 
        end 
  
        if k==n(2)+t 
            x4b=x3; 
            x4=[x4a;x4b]; 
            x4bm=[x4bm,x4b]; 
             
        elseif k>n(2)+t 
            x4b=F4*x4b; 
            x4=[x4a;x4b]; 
            x4bm=[x4bm,x4b]; 
        end 
         
         
        if k>n(1)+t 
             [ x4h,P4,znu,znc,d4a,d4b,itrick ] = modelfour( 
delta,x4h,x4,P4,Q4,x1h,H,R,se,znc,znu,P1,P3 ); 
             zn4=[zn4,znc]; 
             x4hm=[x4hm,x4h]; 
             d4am=[d4am,d4a]; 
             d4bm=[d4bm,d4b]; 
             mitrick=[mitrick,itrick]; 
  
        else 
  
             x4=zeros(12,1); 
             x4h=zeros(12,1); 
  
             [ x4h,P4,znu,znc,d4a,d4b,itrick ] = modelfour( 
delta,x4h,x4,P4,Q4,x1h,H,R,se,znc,znu,P1,P3 ); 
             zn4=[zn4,znc]; 
             x4hm=[x4hm,x4h]; 
             d4am=[d4am,d4a]; 
             d4bm=[d4bm,d4b]; 
             mitrick=[mitrick,itrick]; 
  
  
         end 
  
         if k >n(1) && k<=n(1)+t 
            [P1,P3,Ps,Ks,zns,x1h,x3h,d1,d3,itrick] = 
modelthree(delta,x,x3,xsh,Q3,Ps,H,R,F3,Ks,P1,se,znu); 
            mitrick=[mitrick,itrick]; 
            zn3=[zn3,zns]; 
            x3hm=[x3hm,x3h];          
            d1m=[d1m,d1]; 
            d3m=[d3m,d3]; 



67 
 

  
            [x2h,P2,d2] = modeltwo(x2h,x,P2,znu,H,R); 
            d2m=[d2m,d2]; 
             
            znk=[znu;zns;zeros(3,1)]; 
            znkm=[znkm,znk]; 
            [xk,Pk,dk,ktrick] = kalman( delta,xk,x,Pk,znk,Qk,se); 
            mktrick=[mktrick,ktrick]; 
            xkm=[xkm,xk]; 
            dkm=[dkm,dk]; 
             
  
            
[x01h,x02h,P01,P02,u1,u2,xo,Po,do,c1b,c2b]=modelprob(x1h,x2h,P1,P2,u1,u
2,znu,H,R,x,c1b,c2b); 
            xom=[xom,xo]; 
            dom=[dom,do]; 
  
            
[x1h,x2h,P1,P2]=prediction(x01h,x02h,P01,P02,F1,F2,Q1,Q2,u1,u2); 
            x1hm=[x1hm,x1h]; 
            x2hm=[x2hm,x2h]; 
  
         elseif k >n(2) && k<=n(2)+t 
             
            [P1,P3,Ps,Ks,zns,x1h,x3h,d1,d3,itrick] = 
modelthree(delta,x,x3,xsh,Q3,Ps,H,R,F3,Ks,P1,se,znu); 
            mitrick=[mitrick,itrick]; 
            
            zn3=[zn3,zns]; 
            x3hm=[x3hm,x3h];          
            d1m=[d1m,d1]; 
            d3m=[d3m,d3]; 
  
            [x2h,P2,d2] = modeltwo(x2h,x,P2,znu,H,R); 
            d2m=[d2m,d2]; 
  
            znk=[znu;znc]; 
            znkm=[znkm,znk]; 
  
            [xk,Pk,dk,ktrick] = kalman( delta,xk,x,Pk,znk,Qk,se); 
            mktrick=[mktrick,ktrick]; 
            xkm=[xkm,xk]; 
            dkm=[dkm,dk]; 
             
  
            
[x01h,x02h,P01,P02,u1,u2,xo,Po,do,c1b,c2b]=modelprob(x1h,x2h,P1,P2,u1,u
2,znu,H,R,x,c1b,c2b); 
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            xom=[xom,xo]; 
            dom=[dom,do]; 
  
            
[x1h,x2h,P1,P2]=prediction(x01h,x02h,P01,P02,F1,F2,Q1,Q2,u1,u2); 
            x1hm=[x1hm,x1h]; 
            x2hm=[x2hm,x2h];    
   
         else 
           [ x1h,P1,d1,R] = modelone( x1h,x,P1,H,R,znu); 
            d1m=[d1m,d1]; 
  
            [x2h,P2,d2] = modeltwo(x2h,x,P2,znu,H,R); 
            d2m=[d2m,d2]; 
  
            if k<n(1) 
                znk=[znu;zeros(6,1)]; 
            else 
                znk=[znu;znc]; 
            end 
             
            znkm=[znkm,znk]; 
            [xk,Pk,dk,ktrick] = kalman( delta,xk,x,Pk,znk,Qk,se); 
            mktrick=[mktrick,ktrick]; 
            xkm=[xkm,xk]; 
            dkm=[dkm,dk]; 
          
            
[x01h,x02h,P01,P02,u1,u2,xo,Po,do,c1b,c2b]=modelprob(x1h,x2h,P1,P2,u1,u
2,znu,H,R,x,c1b,c2b); 
            xom=[xom,xo]; 
            dom=[dom,do]; 
             
            
[x1h,x2h,P1,P2]=prediction(x01h,x02h,P01,P02,F1,F2,Q1,Q2,u1,u2); 
            x1hm=[x1hm,x1h]; 
            x2hm=[x2hm,x2h]; 
             
         end 
          
      
          
         if k==n(1)+t 
  
            x4(1:6,1)=x3; 
            x4(7:12,1)=x4b; 
            %x4h(1:6,1)=x3h; 
            %x4h(7:12,1)=zeros(6,1); 
            x4h=[x3h;zeros(6,1)]; 
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            x4hm=[x4hm,x4h]; 
            znc=zeros(6,1); 
             
         elseif k==n(2)+t 
             
            x4(7:12,1)=x3; 
            x4h(7:12,1)=x3h; 
            x4hm=[x4hm,x4h]; 
             
         end 
  
          %Target Motion Step for Straight line motion 
         x=F1*x; 
  
        %Target motion step for constant acceleration 
        if k>t_start1 && k<t_stop1 
            x=F2*x; 
        elseif k>t_start2 && k<t_stop2 
            x=F2*x;    
        end 
  
        %Collect true target vectors 
        xm=[xm,x]; 
       
    end 
  
  
    if dkm(size(dkm,2))>600 
        ttk=1; 
    else 
        ttk=0; 
    end 
  
    if dom(size(dom,2))>600 
        tto=1; 
    else 
        tto=0; 
    end 
    
     
%Keep a running total of distance errors 
if ii==1 
    md1=d1m; 
    md2=d2m; 
    mdo=dom; 
    md3=d3m; 
    md4a=d4am; 
    md4b=d4bm; 
    mdk=dkm; 
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    mem1=em1; 
    txom=xom; 
    tzn1=zn1; 
    txkm=xkm; 
    tzn3=zn3; 
    tx3hm=x3hm; 
    tzn4=zn4; 
    tx4hm=x4hm; 
    txkm=xkm; 
    tottk=ttk; 
    totto=tto; 
    sitrick=sum(mitrick); 
    sktrick=sum(mktrick); 
else 
    md1=md1+d1m; 
    md2=md2+d2m; 
    mdo=mdo+dom; 
    md3=md3+d3m; 
    md4a=md4a+d4am; 
    md4b=md4b+d4bm; 
    mdk=mdk+dkm; 
    mem1=mem1+em1; 
    txom=txom+xom; 
    tzn1=tzn1+zn1; 
    txkm=txkm+xkm; 
    tzn3=tzn3+zn3; 
    tx3hm=tx3hm+x3hm; 
    tzn4=tzn4+zn4; 
    tx4hm=tx4hm+x4hm; 
    txkm=txkm+xkm; 
    tottk=tottk+ttk 
    sktrick=sktrick+sum(mktrick) 
    totto=totto+tto 
    sitrick=sitrick+sum(mitrick) 
    
end 
  
  
end 
  
%Calculate average distance errors 
md1=md1/nloops; 
md2=md2/nloops; 
mdo=mdo/nloops; 
md3=md3/nloops; 
md4a=md4a/nloops; 
md4b=md4b/nloops; 
mdk=mdk/nloops; 
mem1=mem1/nloops; 
mxom=txom/nloops; 
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mzn1=tzn1/nloops; 
mxkm=txkm/nloops; 
mzn3=tzn3/nloops; 
mx3hm=tx3hm/nloops; 
mzn4=tzn4/nloops; 
mx4hm=tx4hm/nloops; 
mxkm=txkm/nloops; 
titrick=sitrick/nloops; 
tktrick=sktrick/nloops; 
  
  
figure; 
hold all; 
plot(mdo,'g'); 
plot(mdk,'r'); 
plot(mem1,'b'); 
title('Combined(Model 1/2) vs Kalman Estimate Mean Error'); 
set(gcf,'color','w'); 
legend ('Combined Estimates','Kalman Estimates','Measurement Error'); 
grid on; 
set( findobj(gca,'type','line'), 'LineWidth', 1.5); 
xlabel('Sample (k)','fontsize',18,'fontweight','bold'); 
ylabel('Mean Distance Error 
(meters)','fontsize',18,'fontweight','bold'); 
set( findobj(gca,'type','line'), 'LineWidth', 1.5); 
  
  
figure; 
title('IMM and JDPA') 
hold all; 
plot(xm(1,:),xm(3,:),'b'); 
plot(xkm(1,:),xkm(3,:),'r'); 
plot(xom(1,:),xom(3,:),'m'); 
  
First split 
plot(zn3(1,1:size(zn3,2)/2),zn3(2,1:size(zn3,2)/2),'g'); 
plot(x3m(1,1:size(x3m,2)/2),x3m(3,1:size(x3m,2)/2),'g'); 
plot(x3hm(1,1:size(x3hm,2)/2),x3hm(3,1:size(x3hm,2)/2),'r'); 
plot(mzn4(1,1:size(mzn4,2)),zn4(2,1:size(zn4,2)),'r'); 
plot(x4am(1,1:size(x4am,2)),x4am(3,1:size(x4am,2)),'g'); 
plot(x4hm(1,1:size(x4hm,2)),x4hm(3,1:size(x4hm,2)),'r'); 
  
Second split 
plot(zn3(1,size(zn3,2)/2+1:size(zn3,2)),zn3(2,size(zn3,2)/2+1:size(zn3,
2)),'g'); 
plot(x3m(1,size(x3m,2)/2+1:size(x3m,2)),x3m(3,size(x3m,2)/2+1:size(x3m,
2)),'g') 
plot(x3hm(1,size(x3hm,2)/2+1:size(x3hm,2)),x3hm(3,size(x3hm,2)/2+1:size
(x3hm,2)),'r'); 
plot(mzn4(4,n(2)-n(1)+1:size(mzn4,2)),zn4(5,n(2)-
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n(1)+1:size(mzn4,2)),'r'); 
plot(x4bm(1,1:size(x4bm,2)),x4bm(3,1:size(x4bm,2)),'g'); 
plot(x4hm(7,n(2)-n(1)+1:size(x4hm,2)),x4hm(9,n(2)-
n(1)+1:size(x4hm,2)),'r'); 
  
set(gcf,'color','w'); 
legend ('True Missile Track','True Split Track','Split Estimates'); 
  
grid on; 
set( findobj(gca,'type','line'), 'LineWidth', 1.5); 
xlabel('X (meters)','fontsize',18,'fontweight','bold'); 
ylabel('Y (meters)','fontsize',18,'fontweight','bold'); 
  
  
figure; 
hold all; 
title('Attempt to Trick Kalman') 
plot(xm(1,:),xm(3,:),'k'); 
plot(xom(1,:),xom(3,:),'b'); 
plot(xkm(1,:),xkm(3,:),'r'); 
plot(x3m(1,1:size(x3m,2)/2),x3m(3,1:size(x3m,2)/2),'g'); 
plot(x4am(1,1:size(x4am,2)),x4am(3,1:size(x4am,2)),'g'); 
plot(x3m(1,size(x3m,2)/2+1:size(x3m,2)),x3m(3,size(x3m,2)/2+1:size(x3m,
2)),'g'); 
plot(x4bm(1,1:size(x4bm,2)),x4bm(3,1:size(x4bm,2)),'g'); 
legend ('True Missile Track','True Split Track'); 
set(gcf,'color','w'); 
grid on; 
set( findobj(gca,'type','line'), 'LineWidth', 1.5); 
xlabel('X (meters)','fontsize',18,'fontweight','bold'); 
ylabel('Y (meters)','fontsize',18,'fontweight','bold'); 
  
figure; 
hold all; 
plot(md3(1:size(md3,2)/2),'r'); 
plot(md3(size(md3,2)/2+1:size(md3,2)),'b'); 
set(gcf,'color','w'); 
legend ('First Split','Second Split'); 
grid on; 
set( findobj(gca,'type','line'), 'LineWidth', 1.5); 
xlabel('Sample (k)','fontsize',18,'fontweight','bold'); 
ylabel('Mean Distance Error 
(meters)','fontsize',18,'fontweight','bold'); 
  
figure; 
hold all; 
plot([zeros(1,100),md4a],'r'); 
plot([zeros(1,800),md4b(n(2)-n(1)+1:size(md4a,2))],'b'); 
plot(mem1,'k'); 
set(gcf,'color','w'); 
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legend ('First Split','Second Split','Measurement Error'); 
grid on; 
set( findobj(gca,'type','line'), 'LineWidth', 1.5); 
xlabel('Sample (k)','fontsize',18,'fontweight','bold'); 
ylabel('Mean Distance Error 
(meters)','fontsize',18,'fontweight','bold'); 
  
figure; 
hold all; 
plot(mdo,'m'); 
plot(mem1,'k'); 
  
set(gcf,'color','w'); 
legend ('Combined Estimates','Measurement Error'); 
grid on; 
set( findobj(gca,'type','line'), 'LineWidth', 1.5); 
xlabel('Sample (k)','fontsize',18,'fontweight','bold'); 
ylabel('Mean Distance Error 
(meters)','fontsize',18,'fontweight','bold'); 
set( findobj(gca,'type','line'), 'LineWidth', 1.5); 
 
 

B. MODEL ONE FUNCTION FILE 

function [ x1h,P1,d1,R] = modelone( x1h,x,P1,H,R,znu) 
         
K1 = P1*H'*inv(H*P1*H' + R); 
x1h = x1h + K1*(znu - H*x1h); 
  
d1=norm(H*(x1h-x)); 
  
%Covariance Update 
n=max(size(x1h)); 
K11 = (eye(n) - K1*H); 
P1 = K11*P1*K11' + K1*R*K1'; 
  
end 

C. MODEL TWO FUNCTION FILE 

function [x2h,P2,d2] = modeltwo(x2h,x,P2,znu,H,R) 
  
    K2 = P2*H'*inv(H*P2*H' + R); 
    x2h = x2h + K2*(znu - H*x2h); 
     
    d2=norm(H*(x2h-x)); 
     
    %Covariance Update 
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    n=max(size(x2h));     
    K22 = (eye(n) - K2*H); 
    P2 = K22*P2*K22' + K2*R*K2'; 
     
end 
 

D. MODEL THREE FUNCTION FILE 

function [P1,P3,Ps,Ks,zns,x1h,x3h,d1,d3,itrick] = 
modelthree(delta,x,x3,xsh,Q3,Ps,H,R,F3,Ks,P1,se,znu); 
   
    sigmax=se; 
    sigmay=se; 
    sigmaz=se; 
  
    zstrue = H*x3;                            
    t=randn(3,1).*[sigmax; sigmay; sigmaz];  
    zns = zstrue + t;                     
    esm = sqrt(t'*t); 
         
    %Generate stacked vectors and matrices 
    Hs = [H          zeros(3,6); 
          zeros(3,6)         H]; 
       
    Rs = [R zeros(3,3);zeros(3,3) R]; 
     
    Fs = [F3           zeros(6,6); 
          zeros(6,6)           F3]; 
  
    Qs = [Q3           zeros(6,6); 
          zeros(6,6)          Q3]; 
  
     
  
     %Model 3 Target assignment 
    z1=[znu;zns]; 
    z2=[zns;znu]; 
     
    z1t = z1 - Hs*xsh; 
    z2t = z2 - Hs*xsh;   
       
    S3 = Hs*Ps*Hs' + Rs; 
     
    n1=(z1t)'*inv(S3)*z1t; 
    n2=(z2t)'*inv(S3)*z2t; 
    
    omega1 = (exp(-(n1/2)))/(det(2*pi*S3)^(1/2)); 
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    omega2 = (exp(-(n2/2)))/(det(2*pi*S3)^(1/2)); 
   
    %Use omega values to associate target with measurement 
    if omega1>=omega2  
        zs=z1; 
        itrick=0; 
    else  
       zs=z2; 
       itrick=1; 
    end 
       
    %Update 
    Ks = Ps*Hs'*inv(Hs*Ps*Hs' + Rs); 
    xsh = xsh + Ks*(zs - Hs*xsh); 
  
    %Convariance Update 
    m=max(size(xsh)); 
    Kss = (eye(m) - Ks*Hs); 
    Ps = Kss*Ps*Kss' + Ks*Rs*Ks'; 
  
    x1h=xsh(1:6); 
    x3h=xsh(7:12); 
    P1 = Ps(1:6,1:6); 
    P3 = Ps(7:12,7:12); 
     
    d1 = norm(H*(x1h-x)); 
    d3 = norm(H*(x3h-x3)); 
     
    xsh = Fs*xsh; 
    Ps = Fs*Ps*Fs' + Qs; 
  
end 

E. MODEL FOUR FUNCTION FILE WITH COMPLETE JDPA FILTER 
ANALYSIS OF ALL AVAILABLE MEASUREMENTS 

function [ x4h,P4,znu,znc,d4a,d4b,itrick ] = modelfour( 
delta,x4h,x4,P4,Q4,x1h,H,R,se,znc,znu,P1,P3 ) 
  
%Target state transition matrix 
    F4 = [1   delta  0    0       0 0; 
          0   1      0    0       0 0; 
          0   0      1    delta   0 0; 
          0   0      0    1       0 0; 
          0   0      0    0       1 0; 
          0   0      0    0       0 1]; 
    %Measurement matrix 
    H=[1 0 0 0 0 0; 
       0 0 1 0 0 0; 
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       0 0 0 0 1 0]; 
  
    sigmax=se; 
    sigmay=se; 
    sigmaz=se; 
    itrick=0;   
    x4a=x4(1:6); 
    zstrue = H*x4a;                   
    t=randn(3,1).*[sigmax; sigmay; sigmaz];  
    zna = zstrue + t;  
  
    x4b=x4(7:12); 
    zstrue = H*x4b;                        
    v=randn(3,1).*[sigmax; sigmay; sigmaz];  
    znb = zstrue + v;  
        
    znc=[zna;znb]; 
  
    %JPDA 
  
    znk=[znu;znc]; 
  
  
    if znk(7,1)>0             %Two split scenario 
        z1=znk(1:3); 
        z2=znk(4:6); 
        z3=znk(7:9); 
  
        x1=x1h; 
        x2=x4(1:6); 
        x3=x4(7:12); 
  
        z11 = z1 - H*x1;                
        z12 = z1 - H*x2; 
        z13 = z1 - H*x3; 
        z21 = z2 - H*x1;                
        z22 = z2 - H*x2; 
        z23 = z2 - H*x3; 
        z31 = z3 - H*x1;                
        z32 = z3 - H*x2; 
        z33 = z3 - H*x3; 
  
        S1 = H*P1*H' + R; 
        S2 = H*P3*H' + R; 
        S3 = H*P3*H' + R; 
  
       g11 = (exp(-(z11)'*inv(S1)*z11/2))/(det(2*pi*S1)^(1/2)); 
       g12 = (exp(-(z12)'*inv(S1)*z12/2))/(det(2*pi*S1)^(1/2)); 
       g13 = (exp(-(z13)'*inv(S1)*z13/2))/(det(2*pi*S1)^(1/2));  
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       g21 = (exp(-(z21)'*inv(S2)*z11/2))/(det(2*pi*S2)^(1/2)); 
       g22 = (exp(-(z22)'*inv(S2)*z22/2))/(det(2*pi*S2)^(1/2)); 
       g23 = (exp(-(z23)'*inv(S2)*z23/2))/(det(2*pi*S2)^(1/2));  
       g31 = (exp(-(z31)'*inv(S3)*z31/2))/(det(2*pi*S3)^(1/2)); 
       g32 = (exp(-(z32)'*inv(S3)*z32/2))/(det(2*pi*S3)^(1/2)); 
       g33 = (exp(-(z33)'*inv(S3)*z33/2))/(det(2*pi*S3)^(1/2));  
  
       gnorm = g11 + g12 + g13 + g21 + g22 + g23 + g31 + g32 + g33; 
  
       h1 = (g11*g22*g33)/gnorm; 
       h2 = (g11*g23*g32)/gnorm; 
       h3 = (g13*g22*g31)/gnorm; 
       h4 = (g12*g21*g33)/gnorm; 
       h5 = (g31*g12*g23)/gnorm; 
       h6 = (g12*g23*g31)/gnorm; 
  
       p11 = h1+h2; 
       p12 = h4+h6; 
       p13 = h3+h5; 
       p21 = h4+h5; 
       p22 = h1+h3; 
       p23 = h2+h6; 
       p31 = h3+h6; 
       p32 = h2+h5; 
       p33 = h1+h4; 
  
       if p11>p12 && p11>p13 
           znu=znk(1:3); 
           itrick=0; 
       end 
       if p12>p11 && p12>p13 
           znu=znk(4:6); 
           itrick=1; 
       end 
       if p13>p11 && p13>p12 
           znu=znk(7:9); 
           itrick=1; 
       end 
  
       if p21>p22 && p21>p23 
           znc(1:3)=znk(1:3); 
            itrick=1; 
       end 
       if p22>p11 && p22>p13 
           znc(1:3)=znk(4:6); 
            itrick=0; 
       end 
       if p23>p11 && p23>p12 
           znc(1:3)=znk(7:9); 
            itrick=1; 
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       end 
  
       if p31>p12 && p31>p13 
           znc(4:6)=znk(1:3); 
            itrick=1; 
       end 
       if p32>p11 && p32>p13 
           znc(4:6)=znk(4:6); 
            itrick=1; 
       end 
       if p33>p11 && p33>p12 
           znc(4:6)=znk(7:9); 
            itrick=0; 
       end 
    
    elseif znk(4,1)>0             %One split scenario 
     
        z1=znk(1:3); 
        z2=znk(4:6); 
  
        x1=x1h; 
        x2=x4(1:6); 
  
        z11 = z1 - H*x1;                
        z12 = z1 - H*x2; 
        z21 = z2 - H*x1;                
        z22 = z2 - H*x2; 
  
        S1 = H*P1*H' + R; 
        S2 = H*P3*H' + R; 
  
       g11 = (exp(-(z11)'*inv(S1)*z11/2))/(det(2*pi*S1)^(1/2)); 
       g12 = (exp(-(z12)'*inv(S1)*z12/2))/(det(2*pi*S1)^(1/2)); 
       g21 = (exp(-(z21)'*inv(S2)*z21/2))/(det(2*pi*S2)^(1/2)); 
       g22 = (exp(-(z22)'*inv(S2)*z22/2))/(det(2*pi*S2)^(1/2)); 
  
       gnorm = g11 + g12 + g21 + g22; 
  
       h1 = (g11*g22)/gnorm; 
       h2 = (g21*g12)/gnorm; 
  
       p11 = h1; 
       p12 = h2; 
       p21 = h2; 
       p22 = h1; 
  
       if p11>p12 
           znu=znk(1:3); 
           znc(1:3)=znk(4:6); 
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           znc(4:6)=zeros(3,1); 
           itrick=0; 
       else 
           znc(1:3)=znk(1:3); 
           znu=znk(4:6); 
           znc(4:6)=zeros(3,1); 
           itrick=1; 
       end 
    else 
            znu=znk(1:3); 
            znc=znk(4:9); 
            itrick=0; 
    end 
     
    zna=znc(1:3); 
    znb=znc(4:6); 
  
if x4(7) > 0 
 
    x4a=x4(1:6); 
    x4ha=x4h(1:6); 
    P4a=P4(1:6,1:6); 
     
    %Drop split target estimates if > 50 km from missile estimates 
    if norm(H*(x1h-x4ha)) < 80*10^3 
         
%         zstrue = H*x4a;                   
%         t=randn(3,1).*[sigmax; sigmay; sigmaz];  
%         zna = zstrue + t;                     
         
        %Update 
        K4a = P4a*H'*inv(H*P4a*H' + R); 
        x4ha = x4ha + K4a*(zna - H*x4ha); 
         
        d4a=norm(H*(x4ha-x4(1:6))); 
  
        %Covariance Update 
        n=max(size(x4ha)); 
        K44a = (eye(n) - K4a*H); 
        P4a = K44a*P4a*K44a' + K4a*R*K4a'; 
  
        %Prediction 
        x4ha=F4*x4ha; 
        P4a = F4*P4a*F4' + Q4; 
  
    else 
        P4a=P4a; 
        x4ha=x4ha; 
        d4a=norm(H*(x4ha-x4(7:12)));   
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    end 
  
  
    x4b=x4(7:12); 
    x4hb=x4h(7:12); 
    P4b=P4(7:12,1:6); 
         
   if norm(H*(x1h-x4hb)) < 80*10^3 
        
%        zstrue = H*x4b;                        
%        v=randn(3,1).*[sigmax; sigmay; sigmaz];  
%        znb = zstrue + v;  
%         
       %Update 
        K4b = P4b*H'*inv(H*P4b*H' + R); 
        x4hb = x4hb + K4b*(znb - H*x4hb); 
         
        d4b=norm(H*(x4hb-x4(7:12))); 
  
        %Covariance Update 
        n=max(size(x4hb)); 
        K44b = (eye(n) - K4b*H); 
        P4b = K44b*P4b*K44b' + K4b*R*K4b'; 
  
        %Prediction 
        x4hb=F4*x4hb; 
        P4b = F4*P4b*F4' + Q4; 
    else 
        P4b=P4b; 
        x4hb=x4hb; 
        d4b=norm(H*(x4hb-x4(7:12)));         
    end 
         
 elseif x4(1) > 0 
      
    x4a=x4(1:6); 
    x4ha=x4h(1:6); 
    P4a=P4(1:6,1:6); 
    P4b=zeros(6,6); 
    x4hb=zeros(6,1); 
    d4b=0;    
     
    %Drop split target estimates if > 50 km from missile estimates 
    if norm(H*(x1h-x4ha)) < 80*10^3 
         
%         zstrue = H*x4a;                   
%         t=randn(3,1).*[sigmax; sigmay; sigmaz];  
%         zna = zstrue + t;                     
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        %Update 
        K4a = P4a*H'*inv(H*P4a*H' + R); 
        x4ha = x4ha + K4a*(zna - H*x4ha); 
         
        d4a=norm(H*(x4ha-x4(1:6))); 
  
        %Covariance Update 
        n=max(size(x4ha)); 
        K44a = (eye(n) - K4a*H); 
        P4a = K44a*P4a*K44a' + K4a*R*K4a'; 
  
        %Prediction 
        x4ha=F4*x4ha; 
        P4a = F4*P4a*F4' + Q4; 
    else  
       P4a=P4a; 
       x4ha=x4ha; 
       d4a=norm(H*(x4ha-x4(1:6))); 
    end 
else 
    x4a=zeros(6,1); 
    x4ha=zeros(6,1); 
    zna=zeros(3,1); 
    d4a=0; 
    P4a=10^4.*    [1 0 0 0 0 0;        %Covariance vector 
                   0 1 0 0 0 0; 
                   0 0 1 0 0 0; 
                   0 0 0 1 0 0; 
                   0 0 0 0 1 0; 
                   0 0 0 0 0 1];  
  
    x4b=zeros(6,1); 
    x4hb=zeros(6,1); 
    znb=zeros(3,1); 
    P4b=10^4.*    [1 0 0 0 0 0;        %Covariance vector 
                   0 1 0 0 0 0; 
                   0 0 1 0 0 0; 
                   0 0 0 1 0 0; 
                   0 0 0 0 1 0; 
                   0 0 0 0 0 1];  
   
    d4b=0; 
end 
    
    znc=[zna;znb]; 
    x4h=[x4ha;x4hb]; 
    P4=[P4a;P4b]; 
  
end 
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F. MODEL PROBABILITY FUNCTION FILE WITH IMM MIXING 

function   
[x01h,x02h,P01,P02,u1,u2,xo,Po,do,c1b,c2b]=modelprob(x1h,x2h,P1,P2,u1,u
2,znu,H,R,x,c1b,c2b) 
  
    %Score the Association 
    z1t = znu - H*x1h;                
    z2t = znu - H*x2h; 
    S1 = H*P1*H' + R; 
    S2 = H*P2*H' + R; 
    if sqrt(det(S1))<10^-5 
        score1 = 10^-5; 
    else 
    score1 = (exp(-(z1t)'*inv(S1)*z1t/2))/(det(2*pi*S1)^(1/2)); 
    end 
    if sqrt(det(S2))<10^-5 
        score2 = 10^-5; 
    else 
        score2 = (exp(-(z2t)'*inv(S2)*z2t/2))/(det(2*pi*S2)^(1/2)); 
    end 
  
    %Update Model 1 and 2 Probabilities 
    c = score1*c1b + score2*c2b; 
    u1 =  score1*(c1b/c);  
    u2 =  score2*(c2b/c); 
     
    %Combined Estimates 
    xo = u1*x1h + u2*x2h; 
    Po = u1*(P1+[x1h-xo]*[x1h-xo]') + u2*(P2+[x2h-xo]*[x2h-xo]'); 
     
    do=norm(H*(xo-x)); 
   
    %Probability of changing state 
    p11 = 0.75;  
    p12 = 0.25;           
    p21 = 0.45; 
    p22 = 0.55; 
  
    %Model 1 and Model 2 mixing 
    c1b = p11*u1 + p21*u2; 
    c2b = p12*u1 + p22*u2; 
  
    x01h = x1h*((p11*u1)/c1b) + x2h*((p21*u2)/c1b); 
    x02h = x1h*((p12*u1)/c2b) + x2h*((p22*u2)/c2b); 
  
    u11=(p11*u1)/c1b; 
    u21=(p21*u2)/c1b; 
    u12=(p12*u1)/c2b; 
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    u22=(p22*u2)/c2b; 
    x11til=x1h-x01h; 
    x21til=x2h-x01h; 
    x12til=x1h-x02h; 
    x22til=x2h-x02h; 
  
    P01=u11*[P1+x11til*x11til']+u21*[P2+x21til*x21til']; 
    P02=u12*[P1+x12til*x12til']+u22*[P2+x22til*x22til']; 
    P01=P1; 
    P02=P2;      
end 

G. PREDICTION FUNCTION FILE  

function 
[x1h,x2h,P1,P2]=prediction(x01h,x02h,P01,P02,F1,F2,Q1,Q2,u1,u2) 
  
    %Predicted target motion after mixing of Model 1 and 2 
    x1h = F1*x01h;              
    x2h = F2*x02h; 
    P1 = F1*P01*F1' + Q1; 
    P2 = F2*P02*F2' + Q2; 
     
end 

H. STANDARD KALMAN FILTER FUNCTION FILE WITH A NEAREST 
NEIGHBOR ALGORITHM FOR MEASUREMENT ASSOCIATION 

function [ xk, Pk,dk,ktrick] = kalman( delta,xk,x,Pk,znk,Qk,R) 
        
%Target state transition matrix 
F1 = [1 delta  0    0    0 0; 
      0   1    0    0    0 0; 
      0   0    1  delta  0 0; 
      0   0    0    1    0 0; 
      0   0    0    0    1 0; 
      0   0    0    0    0 1]; 
  
%Measurement matrix 
H=[1 0 0 0 0 0; 
   0 0 1 0 0 0; 
   0 0 0 0 1 0]; 
  
%Determine which measurement is closest to the Kalman estimate 
  
d1=sqrt((znk(1)-xk(1))^2 + (znk(2)-xk(3))^2); 
d2=sqrt((znk(4)-xk(1))^2 + (znk(5)-xk(3))^2); 
d3=sqrt((znk(7)-xk(1))^2 + (znk(8)-xk(3))^2); 
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ktrick=0; 
  
if abs(znk(4))>0 && abs(znk(7))>0 
     
    if d2<d1 && d2<d3 
      znc=znk(4:6); 
      ktrick=1; 
    elseif d3<d1 && d3<d2 
      znc=znk(7:9); 
      ktrick=1; 
    else 
        znc=znk(1:3);  
        ktrick=0; 
    end  
     
elseif abs(znk(4))>0 
    if d2<d1  
      znc=znk(4:6); 
      ktrick=1; 
    else 
      znc=znk(1:3); 
      ktrick=0; 
    end 
     
else 
    znc=znk(1:3); 
    ktrick=0; 
end 
  
%Update 
Kk = Pk*H'*inv(H*Pk*H' + R); 
xk = xk + Kk*(znc - H*xk); 
  
dk = norm(H*(xk-x)); 
  
%Covariance Update 
n=max(size(xk)); 
Kkk = (eye(n) - Kk*H); 
Pk = Kkk*Pk*Kkk' + Kk*R*Kk'; 
  
%Predicted Target Motion 
xk = F1*xk; 
  
Pk = F1*Pk*F1' + Qk; 
        
end 
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